Spectral threshold dominance, Brouwer's conjecture and maximality of Laplacian energy
نویسندگان
چکیده
منابع مشابه
On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملThreshold graphs of maximal Laplacian energy
The Laplacian energy of a graph sums up the absolute values of the differences of average degree and eigenvalues of the Laplace matrix of the graph. This spectral graph parameter is upper bounded by the energy obtained when replacing the eigenvalues with the conjugate degree sequence of the graph, in which the i-th number counts the nodes having degree at least i. Because the sequences of eigen...
متن کاملSeidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملLaplacian Abelian Projection: Abelian dominance and Monopole dominance
Despite its many successes, the Maximally Abelian Gauge (MAG) [1] has the great drawback that it is ambiguous. A precise way to phrase this ambiguity is as follows: it is in general unlikely, and certainly impossible to guarantee, that the configuration obtained by the usual local iterative minimization algorithm be (arbitrarily) close to the desired configuration {Ūμ,x = Ω̄xUμ,xΩ̄ + x+μ̂}, no mat...
متن کاملLaplacian Sum-Eccentricity Energy of a Graph
We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2017
ISSN: 0024-3795
DOI: 10.1016/j.laa.2016.09.029